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Abstract

We propose a novel distributed user-car matching method
based on a contract between users to mitigate the imbal-
ance problem between vehicle distribution and demand in
free-floating car sharing. Previous regulation methods in-
volved an incentive system based on the predictions of origin-
destination (OD) demand obtained from past usage history.
However, the difficulty these methods have in obtaining ac-
curate data limits their applicability. To overcome this draw-
back, we introduce contract-based coordination among drop-
off and pick-up users in which an auction is conducted for
drop-off users’ intended drop-off locations. We theoretically
analyze the proposed method regarding the upper bound of
its efficiency. We also compare it with a baseline method and
non-regulation scenario on a free-floating car-sharing simula-
tor. The experimental results show that the proposed method
achieves a higher social surplus than the existing method.

Introduction
This paper examines free-floating car sharing services. This
service model allows users to travel one-way and to pick
up and drop off cars anywhere in a dedicated service area.
The high flexibility of such a usage model can be equiva-
lent to that of private car ownership. At present, such ser-
vices include SHARE NOW and Enjoy. Free-floating car
sharing is an interesting application of multi-agent system
technologies because it requires fine-grained coordination
among drop-off and pick-up users.

Regardless of whether car sharing is free-floating or
station-based, a central concern in car sharing studies is im-
balance between the distributions of available vehicles and
origin-destination (OD) demand, which ends up decreas-
ing service efficiency. Many studies have tried to solve this
problem by pricing usage (Jorge, Molnar, and Correia 2015;
Febbraro, Sacco, and Saeednia 2012; Waserhole, Jost, and
Brauner 2013; Singla et al. 2015; Reiss and Bogenberger
2017; Pan et al. 2019) and by predicting demand (Ciari,
Balac, and Balmer 2015; Schmöller et al. 2015; Weikl and
Bogenberger 2013; Li et al. 2019).

Free-floating service models make the problem of imbal-
ance worse due to their flexibility (Weikl and Bogenberger
2013; Wielinski, Trépanier, and Morency 2015), i.e., cars
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are dropped off and picked up at many points. Existing stud-
ies often take the approach of mixed integer programming,
but if we try to apply methods developed for station-based
car sharing to free-floating car sharing, the increase in the
number of pick-up/drop-off points makes solutions difficult
to obtain. Some studies partition free-floating service areas
into smaller zones that serve as virtual stations (Pan et al.
2019). This causes another problem of how to partition the
service area so that pick-up/drop-off points can be efficiently
repositioned. In addition, existing methods more or less as-
sume that usage data is available for prediction. We may be
able to collect such data, but it is difficult to accurately pre-
dict the demand and the price elasticity of demand at each
point. This means that methods developed for obtaining so-
lutions for station-based car sharing systems are difficult to
extend to free-floating car sharing systems.

To solve this problem, we introduce negotiation among a
pick-up user and drop-off users. A pick-up user asks drop-
off users to place the car closer to her current location, and
drop-off users may thus change their initially intended drop-
off locations. More precisely, a pick-up user bids a function
that indicates the cost of picking up the vehicle. Drop-off
users bid their functions that indicate the additional cost for
changing their drop-off point. We also consider the social
value of vehicle usage. The use of a vehicle can be viewed as
vehicle relocation for other pick-up users. A trip to a remote
area is often valuable for many users. We develop a method
for estimating relocation values and use the Vickrey-Clarke-
Groves (VCG) mechanism to determine pairs of pick-up and
drop-off users and the monetary transfers.

The previous methods can be considered as centralized
regulation in that the operator designs adequate incentives
assuming that demand predictions are accurate, whereas our
method can be viewed as distributed regulation in that the
regulation is executed among users through auctions. To the
best of our knowledge, our method is the first regulation
strategy for free-floating car sharing systems that satisfies
(1) scalability against an increase in the number of pick-
up/drop-off points (the set of OD demand points of poten-
tial pick-up/drop-off users), (2) no requirement to partition
the service area, and (3) no requirement for accurate demand
predictions. Also, by virtue of the VCG mechanism, misre-
porting of the cost functions and the destinations of drop-off
users can be prevented.
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Here, a question is to what extent can such distributed reg-
ulation improve the quality of services and social surplus.
To examine this, we model pick-up and drop-off users on
the basis of the existing studies and exhaustively run simu-
lations. Our contribution can be summarized as follows.

• We propose a novel regulation method for free-floating
car sharing that uses the VCG mechanism, which en-
ables a pick-up user and drop-off users to negotiate drop-
off/pick-up locations.

• We clarify the effectiveness of our regulation method and
its characteristics for different demand structures in ser-
vice areas on the basis of the results attained from sim-
ulation experiments. More specifically, we compare our
method with the method proposed by (Singla et al. 2015).
The results of a simulation experiment showed that our
method outperforms the baseline method in terms of ser-
vice levels and social surplus.

Related Work
Regulation methods have been discussed more for the im-
balance problems in one-way car sharing than those in free-
floating car sharing due to service history (Jorge, Correia,
and Barnhart 2014; Febbraro, Sacco, and Saeednia 2012;
Waserhole, Jost, and Brauner 2013; Singla et al. 2015; Reiss
and Bogenberger 2017; Pan et al. 2019). The drawback of
the previous regulation methods is that they explored ade-
quate incentives for users on the basis of the predicted OD
demand and price elasticity of demand obtained from previ-
ous usage history, so they are ineffective when demand pre-
dictions are inaccurate and usage history is sparse or unavail-
able. To overcome these problems, our proposed distributed
regulation method does not assume that demand predictions
are accurate to solve the imbalance problems between car
distribution and demand in free-floating car sharing.

Some studies examined applying auctions to car shar-
ing (Hara and Hato 2018; Angelopoulos et al. 2018). These
studies determined the utilization plan in a rather central-
ized manner and did not consider negotiation between users,
which is different from our study.

Another line of related work is analyses done to clar-
ify user characteristics (Herrmann, Schulte, and Voß 2014;
Leclerc, Trépanier, and Morency 2013). Their observations
are used to set the simulation parameters in this study.

Problem Setting and Formulation
We formulate a problem with free-floating car sharing regu-
lation. The car sharing system operates n cars in a dedicated
service area. The types and conditions of the vehicles are all
the same, and the users are indifferent to them.

We assume a road network consisting of nodes and links,
and cars can be parked at any point on a road in the dedicated
service area. If non-parking zones exist, the discussion be-
low still holds.

The location l of a car corresponds to the coordinates of
latitude and longitude in a continuous 2D space, l ∈ L. We
use a discrete time model, t = 0, 1, 2, · · · . At t = 0, the

status of the n vehicles is “driving” or “parked” at some lo-
cations. Dt and Pt represent the set of cars that are driving
and parked at time t, respectively.

At each time from t = 1, at most one pick-up user at
appears. We assume that if more than one pick-up users
demand car usage at the same time, these requests are se-
quenced in an arbitrary order by reducing the time resolu-
tion. Pick-up user at is located at loat

and wants to move to
ldat

. If the intended trip occurs, she obtain positive valuation
vat

. Pick-up user at has disutility −fat
(x)(≤ 0) depending

on the time x required to pick up a vehicle by walking from
loat

to the location of the vehicle and/or waiting for the arrival
of the drop-off user.

Users driving cars are drop-off users. Bt represents the
set of drop-off users at time t. Drop-off user bj ∈ Bt can
drop off the vehicle at ld

′

bj
different from his initially intended

drop-off location ldbj and walk to ldbj . In such a case, he has
disutility −gbj (x)(≤ 0) in accordance with the delay in ar-
riving at the intended drop-off location ldbj , i.e., the differ-
ence in time x between the new and original itineraries. Be-
cause the driving speed is faster than the walking speed, if
he changes his itinerary, x is larger than zero. After pick-up
user at starts using a vehicle, she changes her role to drop-
off user bj . We allow fat

(x) 6= gbj (x). This is because the
pick-up user may change her trip plan, e.g., she can use pub-
lic transportation instead or cancel her trip before departure
but cannot do so once she has started using the vehicle.

Pick-up user at may be able to negotiate with drop-off
users and asks a drop-off user to park the car closer to loat

by
paying pat

. If the contract increases the utility for drop-off
user bj , he accepts the request, changes the drop-off loca-
tion, and receives reward rbj . Here, we allow pat 6= rbj . If
rbj > pat , the service operator covers the deficit of rbj−pat .
In congested areas, it might be difficult to find a parking slot.
In such cases, the reservation of the parking slot needs to be
incorporated into the negotiation. If the reservation fails, the
negotiation also fails.

Pick-up user at may be able to use a parked car. We as-
sume a virtual user b0 when at uses a parked car and enters a
contract with b0. In this case, pick-up user at does not have
to pay pat because the car is not relocated. Virtual user b0
does not receive reward rb0 .

For pick-up user at, ck = (bk, lk) denotes the contract
under which drop-off user bk drops off his car at location
lk, which is different from the original drop-off location ldbk .
c0 = (b0, lb0) means a special contract under which pick-
up user at uses the vehicle that is parked nearest to loat

, i.e.,
b0 = argmini∈Pt |loat

− li|. lb0 is the parking location of b0.
tat(ck) is a function that returns the time required to pick
up a vehicle under contract ck for pick-up user at. tbj (ck) is
a function that returns the delay in arriving at the intended
drop-off location ldbj for drop-off user bj . Here, we assume
that the users and the operators have accurate information on
the trip duration between two locations either by walking or
driving1.

1Readers may be concerned about uncertainty. We assume that
cars move at a constant speed, but delays might be caused due to
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When users reach an agreement, the pick-up point for user
at should be closer than the location of virtual user b0. The
set of candidate contracts can be denoted as follows.

C = {ck}
= {(bk, lk)|tat

((bk, lk)) ≤ tat
((b0, lb0))} ∪ {(b0, lb0)}

(1)

Here, bk ∈ Bt.
If contract c∗ is entered into, the utilities for pick-up user

at and drop-off user bj are represented as follows.

uat = vat − fat(tat(c
∗))− pat (2)

ubj = −gbj (tbj (c∗)) + rbj (3)

Once the contract is entered into, neither the pick-up user
nor the drop-off user is allowed to break the contract. It may
seem that we evaluate only the space proximity between a
pick-up user and a drop-off user. However, the arguments in
the utility functions are related to time. If a car is dropped
off at a point near a pick-up user, but getting the car takes a
long time, the pick-up user’s utility would decrease, and she
would not confirm such a contract. Thus, the time dimension
of the problem is also included in the consideration.

Our objective is to find a contract that maximizes the so-
cial surplus, i.e., the sum of utilities under the assumption of
individual rationality. Individual rationality means that nei-
ther the pick-up user nor drop-off user enters a contract un-
der which they suffer loss. The budget limit of the operator
is not set prior to providing the service.

Proposed Method
We propose a novel distributed regulation method for free-
floating car sharing systems. The imbalance between vehi-
cle distribution and demand will be reduced through user-
to-user interaction by conducting a VCG auction, i.e., the
adjustment of the drop-off/pick-up location. We assume the
center holds information on current locations and intended
drop-off locations for pick-up users.

An auction is conducted every time a pick-up user applies
for usage. The following process (1-3) is executed.

1. User at applies for usage and reports the valuation of her
trip, her disutility function, her current location (loat

), and
intended drop-off location (ldat

) to the center.
2. The center announces the auction to driving users bj ∈ Bt

and collects bids from them. These bids include infor-
mation on their current location, their intended drop-off
location, and their disutility function gbj (). User bj is
included in the auction if the constraint tat

((bj , lj)) ≤
tat

((b0, lb0)) is satisfied.
3. Execute either of the two actions below.

• If there is at least one eligible driving user: A VCG
auction is conducted for the drop-off users’ drop-off
locations. Note that the pick-up user, as well as the el-
igible drop-off users, are bidders. The auction result is

traffic jams. We suppose that the uncertainty can be dealt with by
introducing a mechanism design with execution failure, which has
already been studied (Porter et al. 2008).

notified to participants, and the decision and monetary
transfer are executed.

• If there are no eligible driving users: the pick-up user
chooses the action that maximizes her utility, either
picking up a parked vehicle b0 without an auction or
cancelling the usage application.

In Step 2, we assume that drop-off users that already have
won a bid do not participate in any rounds. That is, a pick-
up user and drop-off users that have not already committed
to a previous auction round are allowed to participate in the
auction.

In Step 3, we use the VCG mechanism. Assuming road
networks consisting of nodes and links, users and vehicles
can be located at a node or a point on the links. We assume
that a link consists of a finite number of points. By using the
Dijkstra algorithm, we search for the point that maximizes
the social surplus and determines the pickup/drop-off point
lk for each contract ck = (bk, lk).

A user’s trip can be viewed as the relocation of a vehicle
for other pick-up users, i.e., a user’s trip affects the utilities
of other pick-up users. We take such side effects into con-
sideration. We define a location value vL(l) as the expected
valuation at location l. Later, we specify the expression of
vL(l). Also, we define a relocation value vR(lo, ld) for re-
location from lo to ld. If the drop-off location of at is in an
area with many usage requests, such relocation is valuable
for many users. If the drop-off location is in an area with
few usage requests, such relocation is less useful for many
users. vR(lo, ld) is defined as follows.

vR(lo, ld) = vL(ld)− vL(lo) (4)

On the basis of declarations of the pick-up user and the
driving users, contract c∗ and the pick-up user’s drop-off lo-
cation l∗ are selected so as to maximize the social surplus.

{c∗, l∗} = arg max
c∈C,l∈L

(
vat − fat(tat(c))− gbj (tbj (c))

+ vR(ldbj , l)
)

(5)

, where at means the pick-up user, and bj means the driving
user included in contract c. If l∗ 6= ldat

, the center recom-
mends that the pick-up user change its drop-off location to
l∗. The amount of monetary transfer is calculated as follows,
i.e., pick-up user at pays pat to the center, and drop-off user
bj receives rbj from the center.

pat = gbj (tbj (c∗))− vR(ldbj , l
∗) (6)

rbj = −
(

max
c′∈C,c′ 6=c∗,l∈L

(
vat − fat(tat(c

′))− gb′j (tb′j (c′))

+ vR(ldb′j , l)
)
−
(
vat
− fat

(tat
(c∗)) + vR(ldbj , l

∗)
))
(7)

, where b′j means the driving user included in contract c′.
The center’s deficit is equal to pat − rbj .

After the auction, if a parked car is selected instead of
driving users’ cars, it is reserved for the pick-up user.

In estimating a location value vL(l), we assume that (1)
the probability of finding pick-up users pl at location l is
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given, (2) if a pick-up user at location l is allocated a vehicle,
her destination is uniformly distributed in the service area,
and (3) any pick-up users finish driving the car during a time
slot.

Proposition 1. Under assumptions (1), (2), and (3), vL(l)
is given by the following function.

vL(l) =
pl

1− (1− pl)β

(
1 +

β

1− β
pave

)
(8)

, where pave represents the probability of finding pick-up
users averaged over all locations in the service area, and
β(0 ≤ β < 1) is a discount factor for obtaining a value in
the future.

Proof (sketch): Assume n time slots. If a usage request
occurs at t = 0, the probability of finding pick-up users at
t = 1 is pave because of assumption (2). If a usage request
does not occur at t = 0, the probability of finding pick-
up users at t = 1 is still pl because the vehicle parked at
location l does not move. By adding up the expected values
for all cases of n-length occurrences, the expected valuation
Sn for n time slots can be calculated as follows.

Sn = pl

n−1∑
j=0

βjYj (9)

, where Yj = pave + (1− pl)Yj−1, and Y0 = 1. Because Sn

is an expression of a power series, we can transform it into
the following equation.

Sn =
pl

1− (1− pl)β

×
(

1 +
β(1− βn−1)

1− β
pave − (1− pl)βn pave

pl

)
(10)

By considering n→∞, we can get vL(l) as S∞.
Our method satisfies efficiency, individual rationality, and

strategy-proofness under the assumption that vL() is correct.
Note that if a location value is not included in the cal-

culation, our method does not require partitioning the ser-
vice area, any historical data, nor demand predictions. If a
location value is included in the calculation, our method re-
quires somewhat partitioning the service area and historical
data. However, it is different from the existing studies in the
following points. First, in the existing studies, how the ser-
vice area is partitioned is critical. In (Singla et al. 2015), a
payment is controlled by the number of cars in an area, i.e.,
empty, saturated, or otherwise. These are discrete values. In
comparison, in our method, a location value is continuous.
Therefore, the way of partitioning does not change the out-
come drastically. Second, a location value is updated after
processing each usage request. This does not require a lot of
historical data in advance.

Regarding the computational complexity, in this paper,
we assume the center’s availability, i.e., that the center an-
nounces the auction, collects the bids, and distributes the
payments. However, it does not need to solve a large-scale
aggregated optimization problem.

Analysis of Proposed Method

We show a theoretical analysis of the proposed method. Ne-
gotiation among a pick-up user and drop-off users enables
drop-off/pick-up locations to be adjusted. However, it is not
clear whether the accumulation of such local negotiations
leads to global improvement. We show the upper bound of
the improvement ratio in service levels. Here, service level
means to what extent user requests are satisfied.

Apart from the discussion in the previous section, we dis-
tinguish whether a car is already parked or not in examining
the probability of finding a pick-up user. Also, we do not
consider a discount factor in this section. Assume that the
car sharing system operates a single car. α denotes the prob-
ability that a pick-up user can be found after a drop-off user
parks the vehicle at his intended location, i.e., the probability
that a pick-up user exists within the range in which her util-
ity of using the parked car is larger than or equal to zero. We
assume that a usage request happens in a time slot and that
the location of usage requests and the pick-up users’ destina-
tions are uniformly distributed in the service area. Also, any
pick-up users finish driving the car during a time slot. In this
case, in the succeeding n time slots, the expected number of
vehicle utilizations is αn because a pick-up user’s demand
is independent from other users’ demands. Thus, the service
level is equal to αn/n = α.

We use ∆α(> 0) to denote the increment of the proba-
bility that a pick-up user can be found when negotiation be-
tween the pick-up user and the drop-off user is introduced.
Here, the following proposition holds.

Proposition 2. The upper bound of the ratio of the service
level in the proposed method to that in the non-regulation
case is (

1 +
∆α

α

)
(1 + ∆α)n−1 (11)

, where n represents the number of time slots.

Proof (sketch): When the proposed method is used, the
probability of finding a pick-up user increases by ∆α. If we
consider n time slots, vehicle utilization can be represented
as a sequence of occupied or vacant time slots with a length
of n. The probability of finding a pick-up user in time slot t
is α+ ∆α if the vehicle is used in time slot t−1; otherwise,
it is α. Here, the expected number Sn of vehicle utilizations
for n time slots can be calculated by adding up all possible
cases, i.e., all n-length permutations of occupied and vacant.

Sn = n(α+ ∆α)n + (n− 1)(α+ ∆α)n−1(1− α−∆α)

+ (n− 1)(α+ ∆α)n−2(1− α−∆α)α+ · · ·
+ (1− α−∆α)(1− α)n−2α (12)

When the number of occupied time slots is l out of n time
slots, the probability that the vehicle is occupied for the first
l time slots and vacant in the remaining (n − l) time slots
is larger than the probability of other cases including l occu-
pied and n− l vacant. Thus, we have the following.
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Sn ≤ n(α+ ∆α)n

+
n−1∑
l=1

l

(
n

l

)
(α+ ∆α)l(1− α−∆α)(1− α)n−1−l

< n(α+ ∆α)n

+
n−1∑
l=1

l

(
n

l

)
(α+ ∆α)l(1− α)(1− α)n−1−l

= n(α+ ∆α)n

+ (α+ ∆α)
n−1∑
l=1

n

(
n− 1

l − 1

)
(α+ ∆α)l−1(1− α)n−l

= n(α+ ∆α)((α+ ∆α) + (1− α))n−1

= n(α+ ∆α)(1 + ∆α)n−1 (13)

By dividing Sn by n and α, we can obtain the ratio.
This proposition indicates that the improvement ratio be-

comes large as the number of time slots increases if the in-
crement ∆α is small. Also, it indicates that the improvement
becomes larger as the probability α becomes smaller. This is
good news because we can avoid quite a low level of vehicle
utilization by introducing our method.

Experiment Settings and Simulation Process
We constructed a free-floating car sharing simulator to eval-
uate the effectiveness and characteristics of our method. Our
method was compared with an important previous regulation
method and non-regulation scenario in the experiments. The
regulation method by (Singla et al. 2015) was compared as a
baseline with our proposal. Non-regulation scenario means
that all drop-off drivers go to their intended drop-off points,
and pick-up users use cars parked nearest their current loca-
tions if doing so offers a non-negative valuation.

Experiment Settings and Metrics
Experiment Settings. We configured the parameters of
the free-floating car sharing simulator by referring to the
literature (Herrmann, Schulte, and Voß 2014; Wielinski,
Trépanier, and Morency 2015) and an existing free-floating
car sharing service (Car2go). Table 1 shows the experiment
settings. In OD demands, hubs represent points at which
the spatial centralization of OD demands occurs. In 0 Hubs,
there is no spatial centralization of OD demands. In 1 Hub,
destination demands occur around the center of the service
area for six hours, and origin demands occur around the cen-
ter of the service area for the next six hours. This alternation
is repeated. In 5 Hubs, there are five points at which the OD
demands are centralized.

We referred to (Herrmann, Schulte, and Voß 2014) and
constructed reasonable functions.
• Valuation function when picking up vehicle The valua-

tion function of pick-up user at is composed of the pos-
itive valuation vat

obtained by the trip and the disutility
obtained by the time x required to pick up a vehicle.

uat
(x) = vat

− 0.0001αat
x4 (14)

(vat , αat) ∈ {(6, 6), (5, 5), (4, 4), (3, 3), (2, 2), (1, 1)}
This equation means that the user can get a parked car at
most 10 mins away. One of the above six different param-
eter values will be assigned to each user in accordance
with a uniform distribution. Here, we assume that pick-up
users are concerned only about the walking/waiting time
for vehicle usage, but we can incorporate other prefer-
ences such as vehicle preferences into the utility function.

• Valuation function when dropping off a vehicle On the
basis of studies such as (Kato, Sakashita, and Tsuchiya
2015), we assumed that drop-off user bj’s disutility func-
tion can be formulated as follows.

ubj (x) = −0.21x bj ∈ Bt (15)

Metrics. We used service levels, social surplus, and the
center’s deficit to evaluate the proposed method.

Service levels. Service levels are defined as (Potential
customers - No-service events)/Potential customers, i.e., the
ratio of the number of users who succeed in picking up a
vehicle to the number of users who apply for usage.

Social surplus. The social surplus is defined as the total
utilities of the users and the center obtained through the ser-
vice process. It can be denoted as below.

SS = (Vp −Wp)−Dd (16)
We denoted the cumulative positive valuations obtained by
the pick-up users for the trips as Vp, the cumulative disutil-
ities obtained by the pick-up users for the time required to
pick up vehicles −Wp, and the cumulative disutilities ob-
tained by the drop-off users for the delay in reaching the
initially intended destination −Dd. Note that relocation val-
ues were not included in the calculation of the social surplus
to make the comparison possible.

Simulation Process
Simulation Process under Proposed Regulation. At the
beginning of the process, all vehicles are parked in the ser-
vice area in accordance with a uniform distribution. The iter-
ation process finishes when the center takes a certain number
of usage applications.

The center takes an application from pick-up user at with
her current location loat

at time t. Then, the vehicle distri-
bution and the usage conditions are updated. If any driving
users are in the service area, an auction is conducted. A con-
tract is selected by the method described in the section Pro-
posed Method, and the payment and reward are also calcu-
lated. If using a parked car maximizes her utility, she uses a
parked car.

When applying our method, the probability of finding
pick-up users pl needs to be obtained. We divide the ser-
vice area into an 80× 160 grid and record usage requests in
each sub-area. The usage requests in the past are discounted
by β. We use the average value of the probability for 11×11
sub-areas centered on the location l as pl.

The calculation of the negotiated drop-off location can be
done in the following two steps. First, by assuming that the
location is chosen from among the nodes in the road net-
works, we try to find the node that maximizes the social sur-
plus. Then, we consider the rectangle in which these two
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Service Area A rectangular area 8 km in width and 16 km in length with 13,041 nodes and 25,840 links.
To prevent the moving distances from having the same value for multiple routes, each node is fluctuated
by a maximum of ±20 m in the x and y coordinates.

Walking speed 80 m/min (4.8 km/h)
Driving speed 500 m/min (30 km/h)
Duration For pick-up users, the larger value of (a) the distance between the pick-up and the current locations divided

by the walking speed and (b) the distance between the negotiated drop-off location and the drop-off user’s
current location divided by the driving speed.
For drop-off users, (i) the distance between the negotiated drop-off and current locations divided by the
driving speed + (ii) the distance between the negotiated drop-off and initial drop-off locations divided
by the walking speed - (iii) the distance between the initial drop-off and current locations divided by the
driving speed.

Initial vehicle distribution Vehicles are scattered uniformly at the beginning.
Number of vehicles 50, 200.
Demand frequency Demand occurs in intervals of 30 s.
OD demands 0 Hubs, 5 Hubs, 1 Hub in the service area. If hubs exist in the service area, OD demand occurs in accor-

dance with a multivariate normal distribution centered on the hubs with a standard deviation of 700 m.
Whether the hubs become origins or destinations is altered every six hours.

Table 1: Experiment settings

nodes are diagonal points. Second, we try to find a loca-
tion on the link that maximizes the social surplus. The node
selected in Step 1 has at most four links. By moving from
the node along each link, if the social surplus increases, we
can find the location that maximizes the social surplus in a
greedy manner because it has at most a single peak. If the
social surplus decreases, we do not have to examine such
links further. Thus, even if the number of candidate points
increases, we can keep the cost of finding the point that max-
imizes the social surplus within a reasonable amount.

Simulation Process under Baseline. The method pro-
posed by (Singla et al. 2015), DBP-UCB, mainly focuses on
regulation for bike sharing, and the center gives monetary
incentives to users to encourage them to pick up a vehicle
at stations having a number of vehicles higher than a thresh-
old and to drop off a vehicle at stations having a number
of vehicles lower than the threshold. The amount of mone-
tary incentives is determined by applying an extension of the
budgeted multi-armed bandit algorithm.

In (Singla et al. 2015), the pick-up and drop-off locations
are limited to stations designated prior to the service. To ex-
pand this regulation method to free-floating car sharing, the
service area has to be divided into sub-areas that correspond
to the stations assumed by the method. Therefore, we as-
sumed that the service area (8000 m × 16,000 m) can be
divided into an 8× 8 grid in which each sub-area is a rect-
angle 1000-m wide and 2000-m long, considering that the
distances between stations in a station-based sharing service
are supposed to be worth using a vehicle to travel.

If we assume that OD demand is distributed uniformly in
a service area, it is desirable for the vehicles to be distributed
uniformly in the service area. This means that each sub-area
should have 200/64 = 3.125 vehicles in the case of 200 ve-
hicles and 64 sub-areas. Thus, we set the saturation criterion
to 3. We used the same value in the cases of 5 Hubs and 1
Hub. In the case of 50 vehicles, the value was set to 1.

Under this regulation method, the center’s deficit is the

total cost spent as monetary incentives within the budget al-
located in certain time periods.

Results and Discussion
We evaluated the service levels, the social surplus, and the
center’s deficit achieved by different regulation methods for
different initial vehicle distributions under the same demand
until the service had taken 10,000 usage applications.

Service Levels and Social Surplus Compared with
Baseline
Table 2 shows the average service levels, the averaged social
surplus, and the averaged center’s deficit of 10,000 applica-
tions over 10 simulations for each different number of vehi-
cles available under the different regulation methods. The
standard deviation is shown in parentheses. It can be ob-
served that even if the service level has similar values, the
value of social surplus may differ significantly. Completing
a usage request increases the service levels in the same man-
ner, but the closer pick-up users can get a ride, the greater
the social surplus.

Auction without vR means the proposed method that
ignores terms of relocation values, and auction with vR
means the proposed method including relocation values. Our
method achieved higher service levels in 5 of the 6 cases and
a higher social surplus in all cases, compared with the base-
line.

The baseline method improved the average service level
of the non-regulation scenario, but the improvement was not
much in the cases of 50 vehicles. One reason could be that
the reward for repositioning with the baseline method does
not depend on the extra travel distance but whether different
sub-areas are crossed. This result does not necessarily indi-
cate that the baseline method was not effective in the cases
of 50 vehicles, but it shows the difficulty of how to partition
a service area into sub-areas. When we calculated the loca-
tion values of two neighboring locations, the areas used for
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0 Hubs 5 Hubs 1 Hub

50 vehicles 200 vehicles 50 vehicles 200 vehicles 50 vehicles 200 vehicles

No regulation 0.306 (0.0046) 0.741 (0.0051) 0.113 (0.0017) 0.353 (0.0032) 0.114 (0.0026) 0.354 (0.0018)
Baseline 0.311 (0.0054) 0.745 (0.0077) 0.154 (0.0031) 0.535 (0.0081) 0.157 (0.0026) 0.536 (0.0050)
Auction without vR 0.382 (0.0035) 0.684 (0.0093) 0.220 (0.0342) 0.589 (0.0312) 0.189 (0.0037) 0.584 (0.0087)
Auction with vR 0.384 (0.0058) 0.613 (0.0147) 0.254 (0.0517) 0.546 (0.0593) 0.214 (0.0072) 0.544 (0.0180)

No regulation 7,276 (180) 20,178 (167) 3,041 (51) 10,223 (110) 3,077 (92) 10,357 (112)
Baseline 7,398 (146) 19,635 (175) 3,977 (75) 15,207 (264) 4,098 (116) 15,469 (128)
Auction without vR 11,857 (182) 22,649 (298) 8,193 (2,139) 20,478 (2,304) 6,113 (146) 20,060 (376)
Auction with vR 12,011 (224) 20,023 (478) 9,496 (2,960) 18,900 (2,853) 6,998 (292) 18,678 (697)

No regulation 0 0 0 0 0 0
Baseline -106 (10) -1,523 (47) -238 (75) -691 (38) -237 (14) -697 (31)
Auction without vR -4,568 (130) -5,044 (159) -3,033 (1,259) -3,775 (1,250) -1,603 (62) -3,370 (99)
Auction with vR -4,681 (157) -4,728 (149) -3,416 (1,499) -3,904 (1,105) -1,900 (174) -3,505 (115)

Table 2: Simulation results. Top: service levels, Middle: social surplus, Bottom: center’s deficit. Standard deviation is shown in
parentheses.

the calculation largely overlapped. Therefore, the location
values of the neighboring locations are most likely to have
similar values. However, Singla’s method does not assume
overlapping areas, which causes there to be a kind of on-off
control. Whether an incentive is offered or not is sensitive to
how the area is divided into sub-areas.

Table 2 (Bottom) shows that our method increased the
center’s deficit as well as the social surplus. The largest
deficit seemed to be a limitation of our method. However, the
deficit should be evaluated with the increase in the social sur-
plus. The increase of social surplus from the non-regulation
scenario was larger than the deficit amount in cases of 5 and
1 Hubs. In the experiments, a usage fee was not included in
the evaluation because monetary transfer among users and
the center does not affect the social surplus. If a for-profit
company operates the system, the center can collect a usage
fee from users. We can expect the amount of fees to be pro-
portional to the social surplus, i.e., the satisfaction with the
service. Although another experiment is needed for the de-
tailed analysis, the deficit can be covered by the income of
the usage fees. Thus, introducing our method into cases of
high-demand concentrations is promising.

Effectiveness with Different Conditions
Number of vehicles available. When a small number of ve-
hicles is dedicated for a service, our method is still effective.
In such cases, there will be a low possibility that there are
drivers whose intended drop-off locations are close enough
to the pick-up users, i.e., ∆α is close to zero. However, the
probability of finding pick-up users, α, also becomes small.
Thus, even if the number of dedicated vehicles is small, the
improvement of our method is still large.

When the number of dedicated vehicles increases, the
possibility that available vehicles are around the intended
pick-up locations without an auction becomes high, i.e., α
becomes large. Thus, if a large number of vehicles are avail-
able, the improvement of our method becomes small. These
results coincide with the theoretical analysis.
Different demand distribution. We used three cases of 0

Hubs, 5 Hubs, and 1 Hub in the service area as a criterion for
the degree of OD demand concentration. For 1 Hub, the OD
demands were more concentrated than those for 5 Hubs. 0
Hubs corresponds to the case that the OD demands were ex-
tremely distributed. In all situations except for 0 Hubs with
200 vehicles, our method was highly effective. It is inter-
esting to see that auction without vR was better than auction
with vR in cases of 200 vehicles regarding the social surplus,
while the former was worse than the latter in cases of 50 ve-
hicles. When OD demand is concentrated, incorporating re-
location values into auctions becomes effective in increasing
the social surplus.
Execution performance. To deal with real-world situations,
it seems sufficient to consider up to 1,000 vehicles. The
simulation time ends in less than 100 seconds in the case
of 1,000 vehicles with 1,000 usage requests (Intel Core i7-
8565U 1.80 GHz, 16 GB of memory). Although the com-
munication overhead needs to be considered in real-world
situations, a contract can be determined in less than 0.1 sec-
onds. It is a virtue that our method does not have to solve a
large-scale optimization problem.

Conclusion
We proposed a novel distributed regulation method based on
an auction between users to reduce the imbalance between
vehicle distribution and demand in free-floating car sharing.
Our method introduced the relocation value to take into ac-
count the impact of vehicle usage on subsequent users. In
evaluations, we compared our method with the baseline and
a non-regulation scenario in a free-floating car sharing sim-
ulator. The thorough evaluation showed that the proposed
method achieved higher service levels in 5 of the 6 cases and
a higher social surplus in all cases than the methods used for
comparison. In addition, the effectiveness of the proposed
method varied depending on the origin-destination (OD) de-
mand concentrations and the number of dedicated vehicles.
The proposed method is highly effective for severe demand
concentrations, which is a critical situation among imbal-
ance problems.
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